Sponsor
  • ·
  • Chinese Association of
    Integrative Medicine;
    China Academy of Chinese
    Medicine Sciences
Editing
  • ·
  • Editorial Board of
    China Journal of
    Orthopaedics and Traumatology
Publishing
  • ·
  • Publishing House,
    China Journal of
    Orthopaedics and Traumatology
Overseas Distributor
  • ·
  • China International Book
    Trading Corporation
    P.O.Box 399,Beijing,China
    Code No.M587
Mail-order
  • ·
  • Publishing House,
    China Journal of
    Orthopaedics and Traumatology
    No.16A, Nanxiaojie, Dongzhimennei,
    Beijing 100700,China
    Tel:0086-10-84020925
    Fax:0086-10-84036581
    Http://www.zggszz.com
    E-mail:zggszz@sina.com
基于临床科研共享系统建立膝骨关节炎分级模型
Hits: 1884   Download times: 1057   Received:February 26, 2018    
作者Author单位UnitE-Mail
王佩 WANG Pei 中国中医科学院望京医院, 北京 100102 Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China  
张兴平 ZHANG Xing-ping 中国中医科学院望京医院, 北京 100102 Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China xkb-office@126.com 
高云 GAO Yun 中国中医科学院眼科医院, 北京 100040  
魏戌 WEI Xu 中国中医科学院望京医院, 北京 100102 Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China  
杨伟 YANG Wei 中国中医科学院中医临床基础医学研究所, 北京 100700  
王浩 WANG Hao 中国中医科学院望京医院, 北京 100102 Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China  
陈红玉 CHEN Hong-yu 中国中医科学院望京医院, 北京 100102 Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China  
期刊信息:《中国骨伤》2018年31卷,第6期,第528-533页
DOI:10.3969/j.issn.1003-0034.2018.06.009
基金项目:中国中医科学院基本科研业务费自主选题(编号:ZZ0808006)


目的:运用有序Logistic回归分析筛选出膝骨关节炎分级的影响因素,建立膝骨关节炎分级模型,为临床膝骨关节炎分级的测评提供工具。

方法:对2014年9月18日至2016年4月26日就诊于中国中医科学院望京医院的753例膝骨关节炎病例使用单因素、多因素有序Logistic回归分析,构建模型公式并进行评估。

结果:研究发现与膝骨关节炎分级相关的影响因素为13项。其中危险因素包括高龄、肥胖、病程长、反复发作、下肢畸形、股四头肌萎缩,同时VAS评分、WOMAC指数、中医证候量表积分与分级程度呈正相关关系,单膝疼痛、疼痛范围局限、膝关节活动度与分级程度呈负相关关系。本研究构建出膝骨关节炎分级模型,评估检验效能良好(训练集AUC=0.860,测试集AUC=0.879)。

结论:研究建立了膝骨关节炎分级模型,且在初步评估下发现具有良好的预测膝骨关节炎分级的能力。
[关键词]:膝骨关节炎  影响因素  分级模型  Logistic回归
 
Establishment of grading model of knee osteoarthritis based on clinical research system
Abstract:

Objective: The factors influencing the grade of knee osteoarthritis were screened by ordered Logistic regression analysis. The classification model of knee osteoarthritis was established,which provided tool for the evaluation of clinical classification of knee osteoarthritis.

Methods: A total of 753 cases of knee osteoarthritis from Wangjing Hospital,China Academy of Chinese Medical Sciences were treated with single factor and multivariate Logistic regression analysis from September 18,2014 to April 26,2016. The model formula was constructed and evaluated.

Results: In this study,it was found that 13 factors associated with knee osteoarthritis grading. Old age,obesity,long course of disease,recurrence,lower limb deformity,quadriceps muscle atrophy,WOMAC index,TCM syndrome score,VAS score and grading degree were positively correlated. One knee pain,limited pain range,knee activity and grading degree were negatively correlated. The knee osteoarthritis grading model was constructed and the evaluation test was effective(Training set AUC=0.860,test set AUC=0.879).

Conclusion: In this study,a classification model of knee osteoarthritis was established which has a good ability to predict the classification of knee osteoarthritis under preliminary evaluation.
KEYWORDS:Knee osteoarthritis  Influencing factors  Grading model  Logistic regression
 
引用本文,请按以下格式著录参考文献:
中文格式:王佩,张兴平,高云,魏戌,杨伟,王浩,陈红玉.基于临床科研共享系统建立膝骨关节炎分级模型[J].中国骨伤,2018,31(6):528~533
英文格式:WANG Pei,ZHANG Xing-ping,GAO Yun,WEI Xu,YANG Wei,WANG Hao,CHEN Hong-yu.Establishment of grading model of knee osteoarthritis based on clinical research system[J].zhongguo gu shang / China J Orthop Trauma ,2018,31(6):528~533
View Full Text  View/Add Comment  Download reader
Close




版权所有:Editorial Office of China Journal of Orthopaedics and Traumatology京ICP备12048066号  版权声明
地址:No.16A, Nanxiaojie, Dongzhimennei, Beijing 100700, China
电话:0086-10-84036581 传真:0086-10-84036581 Email:zggszz@sina.com