・基础研究・

重组人骨保护素与重组核因子 κb 活化因子受体 蛋白对破骨前体细胞分化的影响

熊琦,张里程,张立海,姚琦,唐佩福 (中国人民解放军总医院骨科,北京 100853)

【摘要】目的:对比重组人骨保护素(rhOPG-Fc)与重组核因子 κ b 活化因子受体蛋白(rhRANK)对破骨前体细胞分化的影响。方法:采用成骨细胞与破骨前体细胞 RAW264.7 混合培养,在地塞米松、1,25(OH) $_2$ VitD $_3$ 诱导下生成破骨细胞的方法。研究分 $_3$ 组:rhRANK 组: $_1$ 0 $_5$ g/L;rhOPG-Fc 组: $_1$ 0 $_5$ g/L;空白对照组。作用 $_2$ 0 d后观察破骨细胞数目和形态,抗酒石酸酸性磷酸酶(TRAP)染色阳性细胞个数,骨磨片吸收陷窝计数。结果:在空白对照组,小鼠成骨细胞与破骨前体细胞 RAW264.7 混合培养 $_3$ 0 d后,开始出现多核细胞, $_3$ 0 d时可见大量成熟多核细胞, $_3$ 2 TRAP染色证实为成熟破骨细胞,而 rhRANK 组及 rhOPG-Fc 组 TRAP染色阳性多核细胞数较对照组均减少,特别是 rhRANK 组减少更明显。骨片吸收陷窝计数显示 rhRANK 组及 rhOPG-Fc 组较对照组也明显减少,而相对来说,rhRANK 组较 rhOPG-Fc 组更少。结论:rhOPG-Fc 与 rhRANK 均可以有效抑制破骨前体细胞分化成为成熟破骨细胞,且 rhRANK 较 rhOPG-Fc 抑制效果更明显。

【**关键词**】 骨保护素; 核因子 κb 活化因子受体蛋白; 破骨前体细胞; 细胞分化 **DOI**: 10.3969/j.issn.1003-0034.2013.04.015

Effects of recombinant human osteoprotegerin and recombinant RANK protein on the differentiation of osteoclast precursors XIONG Qi, ZHANG Li-cheng, ZHANG Li-hai, YAO Qi, and TANG Peifu. Department of Orthopaedics, General Hospital of Chinese PLA, Beijing 100853, China

ABSTRACT Objective: To compare the effect of recombinant OPG–Fc and recombinant RANK protein on the differentiation of osteoclast precursors. Methods: Mouse osteoblasts cell lines were incubated with osteoclast precursors cell lines RAW 264.7 for 9 days with 10⁻⁵ g/L rhRANK or rhOPG–Fc or PBS added to the coculture system. TRAP stain positive cells counting and cortical bone pit formation counting were performed in the 9th day. Results: Multinuleated TRAP stain positive cells were observed in the cocluture systems after 6 days incubation, and plenty of mature osteoclasts could be observed in the 9th day. With the addition of 10⁻⁵ g/L rhOPG–Fc or rhRANK, multinucleated giant cells and cortical bone pit formation couting decreased significantly compared with the control group, and the rhRANK group decreased more significantly than the rhOPG–Fc group. Conclusions: Both rhOPG–Fc and rhRANK can inhabit the differentiation of osteoclast precursors and prevent them forming mature osteoclasts, moreover, the rhRANK shows the significant inhabition effect than the rhOPG–Fc.

KEYWORDS Osteoprotegerin (OPG); Receptor activator of nuclear factor κb protein (RANK); Osteoclast precursor; Cell differentiation

Zhongguo Gu Shang/China J Orthop Trauma, 2013, 26(4): 324–327 www.zggszz.com

OPG/RANKL/RANK 是破骨细胞分化成熟过程中非常重要的信号传导通路^[1-2]。RANKL 由成骨细胞及骨髓基质细胞分泌,通过与破骨前体细胞表面的受体 RANK 结合,刺激破骨前体细胞分化与成熟^[3-4]。OPG 是 RANKL 的假诱性受体,通过竞争性抑制 RANKL 与破骨前体细胞表面 RANK 结合,消除RANKL 对于破骨细胞的诱导作用^[5]。研究表明,通

基金项目:国家自然科学基金(编号:81000796;30973068)

Fund program; the National Natural Science Foundation of China (NO. 81000796;30973068)

通讯作者:唐佩福 E-mail:pftang301@126.com

过基因工程得到的重组人源性 OPG-Fc 及 RANK 蛋白均可竞争性结合 RANKL^[6-7],从而抑制破骨细胞的分化及骨吸收功能,但未见二者在破骨细胞分化、吸收功能方面抑制作用的对比研究。因此本研究旨在对比同等浓度重组人源性 OPG-Fc 及 RANK 蛋白对破骨细胞分化及骨吸收活性的抑制作用。

1 材料和方法

1.1 主要试剂和药品 DMEM 培养液 (Gibco 公司)。胎牛血清(Gibco 公司)。胰蛋白酶(Sigma 公司)。地塞米松(Sigma 公司)。TRAP染色试剂盒(南京建成生物工程所)。1,25-dihydroxy-vitamin D3

- (1,25 (OH)₂VitD₃)(日本和光纯药株式会社)。rhOPG-Fc (上海生工生物公司)。rhRANK蛋白(Met26-Pro210)(中国科学院微生物研究所惠赠)。小鼠成骨细胞株 (解放军总医院骨科研究所)。RAW264.7 细胞株(解放军总医院骨科研究所)。
- 1.2 盖玻片及骨磨片的制备 取 10 mm×10 mm 盖玻片若干,清洗干净后,5%的稀盐酸浸泡过夜,双蒸水漂洗 10 min 后烘干,高压蒸汽灭菌备用。将新鲜牛股骨皮质骨用钢锯及粗细金刚砂石制成 6 mm×6 mm 大小,100 μm 厚的骨磨片,蒸馏水中在超声波清洗仪内清洗 3 次,每次 10 min, ⁶⁰Co 照射消毒后放置 6 孔板中备用。

1.3 细胞培养

- **1.3.1** 成骨细胞培养 将小鼠成骨细胞复苏后接种于含 10%胎牛血清的 DMEM 培养液中,37 \mathbb{C} \mathbb{C} \mathbb{C} \mathbb{C} 2 培养箱培养,24 h 换液 1 次。待细胞增殖到培养瓶面积的 80%时进行传代。
- 1.3.2 RAW264.7 细胞的复苏、培养 RAW264.7 细胞为小鼠单核巨噬细胞瘤细胞。将冻存的RAW264.7 细胞自液氮中取出,室温下静置 1 min 左右,置于 37 ℃的水浴中待冻存液完全溶解。室温 1 000 r/min,离心 3 min,收集细胞。加入适量的DMEM 完全培养基悬浮细胞,根据数量移至 1~3 个 25 cm² 培养瓶中,每瓶中加入 DMEM 完全培养基 5 ml,于 37 ℃、5% CO₂ 培养。根据培养基中酚红指示剂的颜色改变和细胞数量,决定换液和传代时间。
- 1.3.3 破骨细胞培养体系建立 选择生长较好的 成骨细胞以及 RAW264.7 细胞,使用 0.25%胰蛋白酶将其消化下来,分别以每孔 4×10⁴ 与 1×10⁴ 的密度均匀种植于 6 孔板骨磨片和盖玻片培养体系中,每孔加入 3 ml 破骨细胞诱导分化液,即含 10%胎牛血清 DMEM 培养基中加入 Dex 和 1,25 (OH)₂VitD₃,使两者浓度分别为 10⁻⁷mol/L 和 10⁻⁸mol/L。

1.4 观察项目与方法

- 1.4.1 破骨细胞观察、鉴定 将破骨细胞培养体系于7℃、5%CO₂培养箱内培养,隔日换液,倒置相差显微镜下观察细胞生长情况。使用抗酒石酸盐酸性磷酸酶染色(TRAP染色)来鉴定成熟破骨细胞。共培养体系6孔板盖玻片分成3组:空白对照组仅加PBS,两个实验组分别加10-5g/L的rhRANK和rhOPG-Fc,其他培养条件相同,隔日换液。培养9d后使用倒置相差显微镜观察6孔板中玻片破骨细胞生长情况及形态。然后进行TRAP染色,每组取10个视野,倒置相差显微镜100倍下计算TRAP染色阳性多核(2个核以上)细胞总数。
- 1.4.2 骨磨片吸收陷窝观察 骨片按上述方法同

样分为 3 组:实验组加入 10^{-5} g/L 的 rhRANK 或 rhOPG-Fe,空白对照组仅加 PBS。同等条件培养,隔 日换液。第 9 天将各组骨片取出,2.5%戊二醛固定后,甲苯胺蓝染色,光镜 100 倍下对每组整张骨磨片染色阳性陷窝计数。上述染色后的骨磨片经蒸馏水超声清洗 3 次,扫描电镜下观察骨吸收陷窝并照相。 1.5 统计学分析 统计学分析采用 SPSS13.0 软件完成,数据采用均数±标准差(\bar{x} ±s)表示,两组间比较采用参数统计方法独立样本 t 检验,多组间比较采用方差分析,以 P<0.05 为差异有统计学意义。

2 结果

- 2.1 破骨细胞观察结果 破骨前体细胞(RAW264.7) 与成骨细胞共同培养后,成骨细胞比例逐渐减少,形 态均不完整,而 RAW264.7 增长迅速。培养第 4 天, 部分 RAW264.7 进入分化前期, 胞体变厚。第5天, 倒置相差显微镜观察发现混合体系中 RAW264.7 出 现多个分裂相,部分细胞呈现双核。第6天,开始出 现多核巨细胞,胞体较大,中部隆起,边缘较扁平,核 数目尚少,以3~4个核为主。第7天,成熟破骨细胞 核增至5~6个。第8天,破骨细胞核数增多达到8~ 14个,呈现清晰的典型破骨细胞外观。第9天,破骨 细胞核数继续增多达到 16~20 个,直径达 30~40 µm。 TRAP 染色显示多核细胞胞浆呈现玫瑰红色, 证实 为成熟破骨细胞,成骨细胞在混合体内的比例明显 减少,而 RAW264.7 细胞 TRAP 染色则为棕黄色。混 合培养9d后,TRAP染色阳性多核细胞计数,结果 显示:rhOPG-Fc 组与对照组相比,TRAP 阳性细胞 计数明显减少(t=4.62,P<0.05),差异具有统计学意 义;rhRANK 组较对照组 TARP 染色阳性细胞个数 也明显减少 (t=8.97,P<0.05); 且 rhRANK 组较 rhOPG-Fc 组细胞个数减少更明显,差异均具有统计 学意义(t=8.07,P<0.05)(表 1,图 1)。
- 2.2 骨片吸收陷窝观察结果 成骨细胞与 RAW264.7 混合接种 4 h 后,大部分细胞开始在骨片上贴附。混合 2 d 后,RAW264.7 细胞在骨片上生长旺盛,成骨细胞比例逐渐减少。第 6 天,骨片上开始出现 4~5 核的破骨细胞。第 9 天将各组骨片取出,2.5%戊二醛固定后,甲苯胺蓝染色。镜下观察,可见对照组骨片上有较多吸收陷窝,呈圆型、椭圆型及不规则的多种形态,经甲苯胺蓝染色呈蓝紫色。100 倍镜下对整张骨片染色阳性陷窝计数,结果显示:与对照组相比,rhOPG-Fc 组骨磨片吸收陷窝计数明显减少 (t=12.86,P<0.05);而 rhRANK 组较对照组也明显减少(t=21.05,P<0.05);并且 rhRANK 组较 rhOPG-Fc 组减少更为明显,差异均有统计学意义(t=6.72,P<0.05)(表 1)。扫描电镜观察:骨片吸收陷窝形态与甲

图 1 TRAP 染色阳性多核细胞 1a. 对照组 10⁻⁵ g/L PBS(×100) 1b. rhOPG-Fc 组 10⁻⁵ g/L rhOPG-Fc(×100) 1c. rhRANK 组 10⁻⁵ g/L rhRANK (×100)

Fig.1 Multinuleated TRAP stain positive cells **1a.** The coculture system with 10⁻⁵ g/L PBS(×100) **1b.** The coculture system with 10⁻⁵ g/L rhOPG-Fc (×100) **1c.** The coculture system with 10⁻⁵ g/L rhRANK(×100)

表 1 各组间 TRAP 阳性多核细胞计数及骨磨片吸收陷窝计数 (x̄±s, 个)

Tab.1 Multinucleated TRAP stain positive cells and cortical bone pit formation counting $(\bar{x}\pm s, \text{piece})$

组别	视野数	TRAP 计数	吸收陷窝计数
对照组	10	23.44±5.94	90.40±8.27
rhOPG-Fc 组	10	14.00±2.56	40.87±8.94
rhRANK 组	10	5.60±2.07	16.07±7.50

注:TRAP 细胞计数: rhOPG-Fc 组与对照组比较,t=4.62,P<0.05; rhRANK 组与对照组比较,t=8.97,P<0.05; rhRANK 组与 rhOPG-Fc 组比较,t=8.07,P<0.05。吸收陷窝计数: rhOPG-Fc 组与对照组比较,t=12.86,P<0.05; rhRANK 组与对照组比较,t=21.05,P<0.05; rhRANK 组与对照组比较,t=6.72,P<0.05

Note:TRAP:rhOPG-Fc group vs control group, t=4.62, P<0.05; rhRANK group vs control group, t=8.97, P<0.05; rhRANK group vs rhOPG-Fc group, t=8.07, P<0.05. Cortical bone pit:rhOPG-Fc group vs control group, t=12.86, P<0.05; rhRANK group vs control group, t=21.05, P<0.05; rhRANK group vs rhOPG-Fc group, t=6.72, P<0.05

苯胺蓝染色的陷窝形态一致,陷窝边缘清晰,深浅不等,深者底面粗糙,所有骨片吸收陷窝明显不同于哈佛管等其他结构(图 2)。

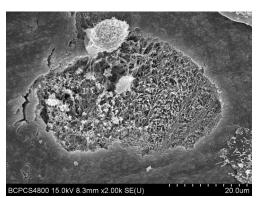


图 2 电镜下骨吸收陷窝

Fig.2 Cortical bone pit imaging with SEM

3 讨论

由于基因工程的进步与发展,在体外已可以合成重组人 OPG 和重组 RANK^[6,8-9],这些体外合成的

OPG 和 RANK 具有与生物体内的 OPG 和 RANK 相同的生物功能,均能与 RANKL 结合竞争性抑制 RANKL 与破骨细胞上 RANK 结合,从而消除 RANKL 对于破骨细胞的生理作用,达到抑制骨吸收、增加骨量的作用。

研究表明重组 OPG 和重组 RANK 均具有抑制 破骨细胞的作用。通过基因工程使酵母菌成功表达 合成 OPG. 将合成的 OPG 加入破骨细胞培养基中. 破骨细胞的骨吸收作用减弱,且成熟的 TRAP 阳性 多核破骨细胞细胞的数量也明显减少[8,10-15]。此外, 将合成的重组 OPG 用于去势小鼠和去势大鼠骨质 疏松治疗研究发现,重组 OPG 能有效抑制骨质疏 松,使骨量明显增加[11]。而经体外实验证实发现,重 组 RANK 蛋白能有效抑制 RANKL 调节的破骨细胞 分化[12],且有研究认为重组可溶性 RANK (重组 sRANK) 以剂量依赖方式抑制破骨细胞生成和骨吸 收陷窝形成,并且 sRANK 可显著抑制 PTH 刺激的 小鼠骨髓细胞碳酸酐酶Ⅱ和抗酒石酸酸性磷酸酶 mRNA 的表达[7]。将 rhRANK 加入破骨细胞培养基 中发现,rhRANK 能有效抑制破骨细胞数量及其骨 吸收能力,且 rhRANK 能有效阻止去势小鼠的骨量 丢失[9]。

以上说明 rhOPG-Fe 与 rhRANK 均能显著性抑制破骨细胞分化过程及其骨吸收功能,从而抑制骨质疏松,但是两者抑制破骨细胞能力强弱则尚未有报道,研究发现浓度为 10⁻⁵ g/L 的 rhRANK 或 rhOPG-Fe 均能显著性抑制破骨细胞数量及其功能^[6,9],因此为对比这两者的抑制能力,本实验选择10⁻⁵ g/L浓度作为比较标准,因为破骨细胞来源于单核巨噬细胞系^[13],因此本实验研究利用 RAW264.7 细胞系作为破骨前体细胞系。

本实验发现,在破骨细胞混合培养体系中加入 10⁻⁵ g/L 的 rhRANK 或 rhOPG-Fc 后,TRAP 染色阳 性多核细胞计数显示与对照组相比,实验组 TARP 染色阳性细胞个数明显减少,且 rhRANK 组较 rhOPG-Fc 组细胞个数减少更明显。据此认为 rhRANK 和 rhOPG-Fc 均能抑制破骨前体细胞分化融合为破骨细胞,且 rhRANK 的抑制效应较 rhOPG-Fc 更为明显。有研究表明 RANK 与 RANKL 的结合力约为 OPG 与 RANKL 结合力的 200 倍左右 [10,14], 本实验结果与此相符。

此外,为对比rhRANK和rhOPG-Fc对破骨细胞骨吸收的抑制能力,本实验还将破骨细胞混合培养体系置于预先准备好的6孔骨磨片上,实验组加入10-5g/L的rhRANK或rhOPG-Fc,培养9d后统计骨磨片吸收陷窝计数,与对照组相比,各实验组骨磨片吸收陷窝计数明显减少,且rhRANK组较rhOPG-Fc组减少更为明显。因此认为rhRANK和rhOPG-Fc不但能有效抑制破骨前体细胞分化,而且能有效抑制破骨细胞的骨吸收能力,并且rhRANK较rhOPG-Fc的抑制能力更强。

综上,本研究表明,同等浓度的 rhRANK 和 rhOPG-Fc 均有效抑制了破骨前体细胞的分化以及 骨吸收作用,而且在 10-5 g/L 水平,rhRANK 的抑制能力较 rhOPG-Fc 更强。然而,本研究结果是基于同等质量浓度下,二者破骨细胞抑制性能的比较;鉴于二者分子量的不同,因此在进一步研究中,需要对二者同等分子数量等级下破骨细胞抑制活性的观察;而且,尚缺乏两种重组蛋白在动物体内实验的对比观察。

参考文献

- [1] Nakashima T, Takayanagi H. New regulation mechanisms of osteoclast differentiation [J]. Ann N Y Acad Sci, 2011, 1240:13–18.
- [2] Lacey DL, Boyle WJ, Simonet WS, et al. Bench to bedside; elucidation of the OPG-RANK-RANKL pathway and the development of denosumab[J]. Nat Rev Drug Discov, 2012, 11(5); 401-419.
- [3] Li J,Sarosi I,Yan XQ, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism[J]. Proc Natl Acad Sci USA. 2000,97(4):1566-1571
- [4] 杨治,朱养均,程延,等. 体外负压培养对骨髓间充质干细胞成骨活性的影响[J]. 中国骨伤,2011,24(12):1024-1027. Yang Z,Zhu YJ,Cheng Y, et al. Effects of negative pressure on osteogenesis in human bone marrow-derived stroma cells cultured in vitro[J]. Zhongguo Gu Shang/China J Orthop Trauma,2011,24 (12):1024-1027. Chinese with abstract in English.
- [5] Cheng X, Kinosaki M, Takami M, et al. Disabling of receptor activator of nuclear factor-kappa B (RANK) receptor complex by novel

- osteoprotegerin-like peptidomimetics restores bone loss in vivo[J]. J Biol Chem, 2004, 279(9):8269–8277.
- [6] Huang P, Wang Y, Chi Z, et al. In vitro study of combination rhOPG– FC and alendronate on inhibiting osteoclast [J]. Zhonghua Wai Ke Za Zhi, 2005, 43(12);812–816.
- [7] Wang BL, Liang H, Zheng F, et al. Recombinant soluble receptor activator of nuclear factor-kappaB inhibits parathyroid hormone-induced osteoclastogenesis in vitro[J]. Sheng Li Xue Bao, 2007, 59 (2):169-174.
- [8] 刘继中,陈苏民,李毅,等. 人骨保护素在毕赤酵母中的分泌表达及表达产物的生物活性分析[J]. 中国生物化学与分子生物学报,2003,19:566-571.
 - Liu JZ, Chen SM, Li Yi, et al. Secretory expression of human osteoprotegerin in pichia pastoris and bioactivity analysis of the? recombine protein[J]. Zhongguo Sheng Wu Hua Xue Yu Fen Zi Sheng Wu Xue Bao, 2003, 19(5):566–571. Chinese.
- [9] Tang P,Zhang L,Xu M, et al. Inhibition of the osteoclast activity with the application of recombinant murine RANK protein[J]. Artif Cells Blood Sub Stit Immobil Biotechnol, 2010, 38(4):169-177.
- [10] Vitovski S, Phillips JS, Sayers J, et al. Investigating the interaction between osteoprotegerin and receptor activator of NF-kB or tumor necrosis factor-related apoptosis-inducing ligand; eviedence for a pivotal role for osteoprotegerin in regulating two distinct pathways [J]. J Biological Chem, 2007, 282, 31601–31609.
- [11] 张忠荣,王爱民,王晓军,等. 人骨保护素重组腺病毒抑制去势骨质疏松大鼠骨吸收作用的研究[J]. 中国临床康复,2004,8 (36):8267-8269.

 Zhang ZR, Wang AM, Wang XJ, et al. Effect of recombinant adenovirus vector carrying human osteoprotegerin gene in inhibiting bone resorption in ovariectomized rat model of osteoporosis [J].

 Zhongguo Lin Chuang Kang Fu,2004,8(36):8267-8269. Chinese.
- [12] Kim H, Choi HK, Shin JH, et al. Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice[J]. J Clin Invest, 2009, 119(4):813-825.
- [13] 俞索静,肖鲁伟,吴承亮,等. 破骨细胞血系起源的活细胞成像观察[J]. 中国骨伤,2012,25(4):317-323.
 Yu SJ,Xiao LW,Wu CL,et al. Imaging observation of live cells originating from osteoclasts of the blood system[J]. Zhongguo Gu Shang/China J Orthop Trauma,2012,25(4):317-323. Chinese with abstract in English.
- [14] Zhang S, Liu C, Huang P, et al. The affinity of human RANK binding to its ligand RANKL[J]. Arch Biochem Biophys, 2009, 487-49-53.
- [15] 杨旭,杨庆铭,邓廉夫. 重组人骨保护素对体外培养兔破骨细胞的影响[J]. 中华骨科杂志,2003,23(6):365-368. Yang X,Yang QM,Deng LF,et al. Effects of recombinant human osteoprotegerin on rabbit osteoclasts in vitro[J]. Zhonghua Gu Ke Za Zhi,2003,23(6):365-368. Chinese.

(收稿日期:2012-06-20 本文编辑:王玉蔓)